GASCHROMATOGRAPHISCHE RETENTIONSDATEN UND STRUKTUR CHEMISCHER VERBINDUNGEN

I. α-VERZWEIGTE ALIPHATISCHE UND ALICYCLISCHE CARBONSÄURE-METHYLESTER

GERHARD SCHOMBURG

Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr (Deutschland)

(Eingegangen den 2. August 1963)

Die Schwierigkeiten des gaschromatographischen Arbeitens mit analytischer Zielsetzung liegen weniger in der Trennung sich strukturell unterscheidender Verbindungen als in deren anschliessender Identifizierung. Die vorliegende Arbeit wird sich mit der Identifizierung gaschromatographisch getrennter Verbindungen mit überwiegend gaschromatographischen Mitteln, also über deren Retentionsvolumina in verschiedenen stationären Phasen, befassen. In jeder dieser stationären Phasen ergibt sich für eine bestimmte Verbindung ein nur von der Temperatur und der Polarität dieser Phase abhängiger Verteilungskoeffizient. Trotzdem ist die vollständige Identifizierung komplizierter Mischungen, die etwa Vertreter verschiedener Stoffklassen enthalten, auf gaschromatographischem Wege schwierig. Aus diesem Grunde wird die Kombination gaschromatographischer Trennmethoden mit anderen physikalischen Identifizierungsverfahren oder mit einer chemischen Vortrennung bzw. die Anwendung von Reaktionsgaschromatographie notwendig. Das kann sowohl mit den gaschromatographisch getrennten Komponenten als auch mit der Ausgangsmischung geschehen. Zu den physikalischen Identifizierungsverfahren sind auch die qualitativen oder selektiven Detektoren zu rechnen.

An dieser Stelle sei besonders auf die Kombination gaschromatographischer und massenspektrometrischer Methoden verwiesen¹⁻⁷. Für die ausschliessliche Anwendung von gaschromatographischen Daten zur Identifizierung — besonders von isomeren Verbindungen mit gleicher funktioneller Gruppe — benötigt man ein umfangreiches Vergleichsmaterial, da die Kenntnisse über die Zusammenhänge zwischen Struktur und Retentionsvolumen vorläufig noch beschränkt sind. Für die Unterscheidung von Verbindungen mit verschiedenen funktionellen Gruppen leisten rein gaschromatographische Identifizierungsverfahren wesentliche Hilfe. BAYER⁸ verwendet z.B. hierzu seine Selektivitätskoeffizienten, BROWN⁹ das "functional groups retention ratio", und auch im KOVATS-schen System^{10,11} der Retentionsindices und ΔI -Werte ist eine Identifizierung nach funktionellen Gruppen leicht möglich. Insbesonders das Retentionsindexsystem von KOVATS ist aber auch geeignet, in Substanzklassen mit gleicher funktioneller Gruppe feinere strukturelle Einflüsse zuerfassen. Zur Gewinnung eines umfangreichen Vergleichsmaterials für Strukturaufklärungen mit Hilfe der Gaschromatographie wird entweder eine grössere Zahl von reinen oder annähernd reinen Substanzen benötigt, oder es sind Mischungen mit Komponenten, deren Zuordnung mit anderen chemischen oder physikalischen Hilfsmitteln leicht möglich ist, erforderlich. Gerade bei Isomeren-Gemischen, die sich nur gaschromatographisch trennen lassen, treten aber die grössten Schwierigkeiten auf, da bei guten Trennungen, wie sie etwa in Kapillarsäulen erreicht werden, die Isolierung von Fraktionen zur Durchführung weiterer Identifizierungsoperationen auf Schwierigkeiten stösst.

Schon in den Anfängen der Gaschromatographie wurden graphische Darstellungen der Logarithmen der Retentionsvolumina gegen die C-Zahl von Gliedern homologer Reihen benutzt, um z.B. zu entscheiden, ob es sich bei einer Substanz, über die nicht mehr als die Art der funktionellen Gruppe und die C-Zahl bekannt sind, um einen ganz bestimmten Isomerentyp handelt. Umgekehrt lässt sich aus solchen Diagrammen natürlich auch die C-Zahl und die Art der funktionellen Gruppen ermitteln.

Zusätzlich wurden in der vorliegenden Arbeit folgende Hilfsmethoden und Informationen zur Identifizierung verwandt:

Auskünfte des Chemikers, von dem die Substanzen präpariert wurden, über Zahl und C-Zahl der zu erwartenden Isomeren in einem Gemisch.

Modellsubstanzen, die auf synthetischem, chemisch eindeutigem Wege gewonnen wurden.

Siedepunkte und Siedepunktsregeln.

Share a second second

Massenspektrometrische Kontrollen an Modellsubstanzen und -mischungen sowie an gaschromatographisch getrennten Komponenten.

Die unterscheidende Qualität gaschromatographischer Daten zur Charakterisierung von Substanzen hängt in starkem Masse von der Trennleistung der benutzten gaschromatographischen Säule ab. Je höher die effektive Trennleistung einer gaschromatographischen Säule, definiert etwa durch die Zahl der theoretischen Böden oder andere Kenngrössen wie Trennzahlen, vgl. KAISER¹², ist, um so geringer ist die Wahrscheinlichkeit, dass zwei Isomere mit gleicher funktioneller Gruppe nicht unterscheidbare gaschromatographische Kenngrössen haben. Aus diesem Grunde wurden in der vorliegenden Arbeit alle Messungen mit Kapillarsäulen durchgeführt. Wie bereits oben angedeutet, lassen sich Verbindungen mit verschiedener funktioneller Gruppe natürlich leicht auch durch Wahl einer anderen stationären Phase trennen. Es darf allerdings keine Überlagerung mit anderen Verbindungen zustande kommen. Bei solchen identifizierenden Messungen ist es erstrebenswert, dass die Polarität der verwandten stationären Phasen definiert ist. Das kann erreicht werden, indem man sich konsequent auf eine polare stationäre Phase festlegt, wie es etwa Kovars gemacht hat, oder verschiedene stationäre Phasen verwendet, deren Polaritätsunterschiede sich durch eine Kenngrösse erfassen lassen. Wegen der verschiedenen Wechselwirkungsarten zwischen den gelösten Molekülen und den Molekülen der stationären Phase ist eine einheitliche Definition der Polarität allerdings schwer möglich. Versuche in dieser Richtung sind von ROHRSCHNEIDER¹³ und von BROWN⁹ unternommen worden. In Anlehnung an das ROHRSCHNEIDER-sche Konzept wurde in der vorliegenden Arbeit die Differenz der Kovars-schen Retentionsindices von Benzol (I^B) und Cyclohexan (I^c) hierzu benutzt. Die Tabelle I zeigt, dass bei stationären Phasen, die als polar oder stark polar bekannt sind, diese Differenz ansteigt. Die Indexwerte polarer Verbindungen in polaren stationären Phasen werden um so grösser sein, je polarer diese Phasen sind. Im günstigsten Fall sollte sich ein linearer Zusammenhang

zwischen der Indexdifferenz von Benzol und Cyclohexan in verschiedenen stationären Phasen und dem Retentionsindex einer bestimmten Substanz in diesen Phasen ergeben.

Tatsächlich wird dieser lineare Zusammenhang für Olefine und Aromaten auch gefunden, da bei diesen Verbindungen die gleiche Art der Wechselwirkung zwischen gelösten Molekülen und stationärer Phase wie bei Benzol besteht. Inwieweit diese Polaritätsgrösse auch zur Voraussage der Retentionsindices von Verbindungen mit anderer funktioneller Gruppe geeignet ist, sollen weitere Arbeiten, über die an anderer Stelle berichtet werden wird, zeigen. Die Retentionsindices der Carbonsäuremethylester steigen jedenfalls mit der Grösse der $I^B - I^C$ -Differenz - wenn auch nicht vollständig linear - an.

Stationäre Phase	Témp. (°C)	IB IC	$I^B - I^C + z_i$
Squalan	65	25	o
Polypropylenglykol	60	107	132
Emulphor-O	65	118	143
Polypropylensebazat	65	121	146
Siliconöl XF 1150	65	176	201
Reoplex 400	65	223	248

TA	\mathbf{B}	E	L	L	E	I
	_	_	_	_	_	-

STRUKTURTYPEN DER UNTERSUCHTEN VERBINDUNGEN

Es wurde eine grössere Zahl von cyclischen und acyclischen Carbonsäuremethylestern mit Alkylverzweigungen in α -Stellung zur Carboxylgruppe gemessen:

Bei den cyclischen Estern befindet sich die Carboxylgruppe immer direkt am Ring.

Alle Carbonsäureester entstammen der Koch-schen¹⁴ Carbonsäuresynthese, die im Max-Planck-Institut für Kohlenforschung entwickelt wurde, und wurden mir freundlicherweise von Möller¹⁵ zur Verfügung gestellt, der sich mit Art und Umfang der Isomerisierung unverzweigter Monoolefine bei dieser Synthese befasst hat. In ihrer normalen Ausführungsform werden Olefine in Gegenwart saurer Katalysatoren durch Anlagerung von Kohlenoxyd und Wasser in sekundäre und tertiäre Carbonsäuren umgewandelt. Tertiäre Säuren entstehen dabei durch Methylgruppenwanderung.

So sind von den Heptancarbonsäuren, die aus Hepten-(I), -(2), -(3) und -(4) entstehen, 5 Isomere zu erwarten:

Die Zahl der in den jeweiligen C-Zahlbereichen zu erwartenden Isomeren zeigt das Schema:

C-Zahl des Alkans	4	5	б	7	8	9	10	11	12
Isomere mit unverzweigtem Alkan	I	2	2	3	3	4	4	5	5
Isomere mit metnylverzweigtem Alkan	I	I	2	2	3	3	4	4	5

Bei Benutzung der richtigen Kontakte werden in Gegenwart von Methanol gleich die Methylester der genannten Carbonsäuren erhalten, die auch zunächst — der geringeren gaschromatographischen Schwierigkeiten wegen — Gegenstand dieser Untersuchungen waren. Es ist abzusehen, dass bei Verwendung geeigneter Zusätze zur stationären Phase auch die freien Carbonsäuren ohne "tailing" mit guter Bödenzahl getrennt werden können.

GASCHROMATOGRAPHISCHE ERGEBNISSE

Für die graphischen Darstellungen des Materials wurden die sog. Nettoretentionsvolumina aus den Chromatogrammen ermittelt und gegen die C-Zahl aufgetragen. Das Gasvolumen der Säule wurde aus dem Retentionsvolumen von Methan, das sich nur wenig von demjenigen von Stickstoff und Sauerstoff unterscheidet, sowie durch Extrapolation aus dem Retentionsvolumen der n-Paraffine auf ähnliche Weise wie von Evans und Smith¹⁶ bestimmt.

Fig. I zeigt das Chromatogramm der Methylester sämtlicher nach der Kochschen Synthese möglichen acyclischen Carbonsäuren in den C-Zahlbereichen von C_5-C_{12} , also ohne die Alkancarbonsäure-(I)-methylester. Es wurde mit einer Kapillarsäule mit Polypropylenglykol als stationäre Phase bei einer Bödenzahl von 1000/m aufgenommen. Es handelt sich um das Chromatogramm einer künstlichen oder "master"-Mischung, die allerdings auch praktische Bedeutung hat. Die Zuordnung der einzelnen Peaks zu den verschiedenen Isomeren geschah auf folgende Weise:

1. Von den insgesamt 45 Isomeren im C_5-C_{12} -Bereich standen 9 in Form von Modellsubstanzen zur Verfügung, die auf chemisch eindeutigem Wege dargestellt worden waren.

2. In jedem C-Zahlbereich stand ein Isomerengemisch zur Verfügung, das frei von Verbindungen anderer C-Zahlen war. Werden nur unverzweigte Olefine für die

Säulenlänge :

KOCH-sche Carbonsäure-Synthese benutzt, so sind weder C-Alkylierungen, die zu Kettenverlängerungen, noch Fragmentierungen, die zur Kettenverkürzung führen, möglich (Kontrolle mit Hilfe der Massenspektrometrie).

3. Auf Grund der von den Siedepunkten solcher und anderer Isomerer bekannten Regeln wurde angenommen, dass das Retentionsvolumen in — zunächst apolaren stationären Phasen fällt, wenn der Carboxylrest in die Mitte wandert und dass tertiäre Carbonsäureester kleinere Retentionsvolumina haben als sekundäre.

4. Schliesslich wurde die logarithmische Auftragung der Retentionsvolumina gegen die C-Zahl, vgl. Fig. 2, bzw. die Kovats-schen Indices und die sich auf diese Weise ergebenden Regelmässigkeiten, zur Zuordnung benutzt.

Das Ergebnis der Zuordnung wird zeigen, inwieweit die Annahmen, die insbesondere unter den Punkten 3 und 4 aufgeführt sind, zutreffen und wo sie in bestimmten Fällen zu Irrtümern führen. Aus dem Chromatogramm der Fig. 1 und der graphischen Darstellung der Fig. 2 geht hervor, dass in den C-Zahlbereichen zwischen C₆ und C₉ alle Isomeren der beiden obengenannten Verzweigungstypen getrennt werden

können. Von C_{10} an ist es schwierig, die 2-Methylalkancarbonsäure-(2) von der 3-Methylalkancarbonsäure-(3) zu trennen. Im Diagramm der Fig. 2 laufen die Kurven der entsprechenden Homologen von C_{10} an zusammen. Beim Übergang zu einer stationären Phase mit höherer Polarität, etwa Polypropylensebazat, lassen sich die beiden Isomeren noch im C_{11} -Bereich trennen.

Sämtliche Kurven, mit Ausnahme derjenigen der normalen unverzweigten Carbonsäureester, zeigen im gleichen C-Zahlbereich um so stärkere Krümmungen, je verzweigter das Kohlenstoffgerüst ist. Diese Krümmungen können bei der Identifizierung über die Retentionsvolumina besonders bei den niedrigen C-Zahlen zu falschen Zuordnungen führen. Eine eingehende Diskussion der strukturellen Einflüsse auf die Retentionsgrössen soll aber an den Retentionsindices von KovATS^{10,11} erfolgen.

Der Sinn der KovATS-schen Retentionsindices ist, die für eine Substanz charakteristische gaschromatographische Grösse, das Retentionsvolumen, in eine leicht reproduzierbare Standardform zu bringen, in der sie von den Geräteparametern unabhängig ist. Als Bezugs- oder Standardsubstanzen wurden die n-Paraffine benutzt. Die KovATS-schen Indices einer Verbindung gehen ihrer freien Verdampfungsenthalpie aus der betreffenden stationären Phase parallel und sind deswegen zu Betrachtungen über Kohäsion und Wechselwirkung zwischen den Molekülen besonders geeignet. Sie werden an dem willkürlich gewählten Standardmasstab, nämlich dem der freien Verdampfungsenthalpien der n-Paraffine, gemessen, die innerhalb eines weiten Temperaturbereichs einen linearen Temperaturgang zeigen. Ausserdem steigen bei den n-Paraffinen und anderen homologen Reihen die Siedepunkte bzw. die Verdampfungsenthalpien linear mit der Zahl der Kohlenstoffatome an. Alle anderen Einflüsse auf das Retentionsverhalten rühren bezüglich der gelösten Substanz von der Wechselwirkung der funktionellen Gruppe und den sterischen Faktoren für die Wechselwirkung her. Der Index einer Substanz ist definier⁺ durch die Gleichung:

$$I = 200 \frac{\log V_R^{\circ} \text{ (Substanz)} - \log V_R^{\circ} (nP_z)}{\log V_R^{\circ} (nP_{z+2}) - \log V_R^{\circ} (nP_z)} + 100 \cdot z$$

wo V_R° = Retentionsvolumen, $nP_z = n$ -Paraffin mit z C-Atomen,

z = gerade Zahl.

Die Forderung von Kovats, dass z eine gerade Zahl sein muss, ist nicht berechtigt, da die lineare Abhängigkeit des Retentionsvolumens von der C-Zahl auch für die ungeraden Paraffine erfüllt ist. Der Index hängt ab von der Art der Substanz, der Temperatur und von der Art der stationären Phase. Durch Auswahl mindestens zweier stationärer Phasen, einer apolaren und einer polaren, erhält man ein binäres System von Indexwerten, das zur Charakterisierung von Substanzen nach Molekülgrösse, Verzweigungsgrad des Kohlenstoffgerüstes und Art der funktionellen Gruppen geeignet ist.

Als apolare stationäre Phase wurde Squalan (S), als polare stationäre Phase Polypropylensebazat (PPS), aber auch andere Phasen mit geringerer Polarität benutzt.

Alle Indices wurden mehrfach gemessen, sowohl in Chromatogrammen, die sich über mehrere C-Zahlen erstreckten und somit eine lange Laufzeit hatten wie auch in

manual $\frac{1}{20}$ 10^{5}			Sgu	alan	Polypropycngly	tol Ucon	Polybropyl	lensebazat	IV
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dienyjester aer	Sep.	120°	150°	1200	150°	130°	150°	I-S4dl
Pertanentonssime (a) 138.2 804 945 1002 223 2 Me.Bratacrhonssime (a) 135.6 796 995 1008 1139 224 2 Me.Bratacrhonssime (a) 135.6 796 995 905 1008 239 Cyclopentanerhonssime (a) 135.6 796 903 903 206 246 Hearanerhonssime (a) 160.7 893 902 1008 11231 224 Hearanerhonssime (a) 160.7 893 902 1036 203 203 AMe Pertanerhonssime (a) 1477 847 974 1079 224 Hearanerhonssime (a) 1477 849 974 1098 203 AMe Pertanerhonssime (a) 1477 847 974 1079 224 Hearanerhonssime (a) 147 849 1003 1034 224 Me Cyclopentanerhonssime (a) 1773 979 1044 1237 224 Heytanerhonssime (a) 1773 976	Pentancarbonsäure-(1)		849		0101		7001		248
Pentancarbonstance (s)* 13,5,6 790 935 903 903 222 Cyclopentanerbonstance (s)* 127,0 763 903 1000 1190 1196 246 Hearacarbonstance (s)* 127,0 763 903 1000 1193 246 Hearacarbonstance (s)* 147,7 893 1031 1193 221 Hearacarbonstance (s)* 147,7 893 1030 1393 221 Affectanacrbonstance (s)* 147,7 893 1031 1100 211 Affectanacrbonstance (s)* 147,7 843 1007 1031 221 Affectanacrbonstance (s)* 147,7 843 1030 1391 221 Affectanacrbonstance (s)* 147,7 844 1030 239 247 Affectanacrbonstance (s)* 177,3 976 1113 1217 221 Affectanacrbonstance (s) 177,3 976 1113 1217 223 Affectanacrbonstance (s) 177,3 177	Pentancarbonsäure-(2)	138.2	804		945		1027		223
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pentancarbonsäure-(3)*	135.6	206		950		1018		222
Cyclopentanearbonsinre (1) Box 100 1100 1100 246 Hexancarbonsinre (1) Hexancarbonsinre (1) 1007 952 1111 1198 246 Hexancarbonsinre (1) Hexancarbonsinre (2) 1007 952 1111 1198 246 Hexancarbonsinre (2) Hexancarbonsinre (2) 1477 884 974 1006 239 246 Affer Pentanearbonsinre (2) 1477 884 976 1110 1079 210 211 210 <td< td=""><td>2-Me-Butancarbonsäure-(2)*</td><td>127.0</td><td>763</td><td></td><td>895</td><td></td><td>968</td><td></td><td>205</td></td<>	2-Me-Butancarbonsäure-(2)*	127.0	763		895		968		205
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cyclopentancarbonsäure	•	898	902	Ś	1080	0611	9611	294
Hexancarbonsiture (a)*** 160.7 89.9 1038 1121 222 $2Me Fentamearbonsiture (a)*** 147.7 847 97.4 1000 2010 $	Hexancarbonsäure-(1)		952		IIII		8611		246
Me Pentancarbonsäure (g)*** 1477 847 974 1006 2100 Me Pentancarbonsäure (g)**** 1477 847 974 1006 2100 Me Pentancarbonsäure (g)**** 1477 847 974 1009 2100 Me Pentancarbonsäure (g)**** 1007 1011 1106 1009 2109 Me Pentancarbonsäure (g)*** 1007 1001 1006 1100 2109 Me Pentancarbonsäure (g)* 1773 996 1110 1120 247 Heptancarbonsäure (g)* 1773 996 11102 11209 217 Heptancarbonsäure (g)* 1773 996 11102 11209 217 Heptancarbonsäure (g)* 1773 996 11102 11209 2109 Heptancarbonsäure (g)* 1686 993 1004 1130 217 Heptancarbonsäure (g)* 1686 1092 1004 1133 201 Heptancarbonsäure (g)* 1686 1002 1002 1102 2123 </td <td>Hexancarhonsänre-(2) **</td> <td>160.7</td> <td>800</td> <td></td> <td>1038</td> <td></td> <td>1121</td> <td></td> <td>222</td>	Hexancarhonsänre-(2) **	160.7	800		1038		1121		222
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hevenresthonesure-(2) **	1	88				0011		910
Me - Fantancarbonsäure(1), ** $9,1$ $9,1$ $10,9$ $10,9$ 210 $Me - Fantancarbonsäure(2), **$ $10,7$ $10,7$ $10,7$ $10,9$ 210 $Me - Fantancarbonsäure(1)$ $10,7$ $10,7$ $10,7$ $10,9$ 210 $Me - Fantancarbonsäure(1)$ $10,7$ $10,7$ $10,7$ $10,7$ $21,7$ $Heptancarbonsäure(1)$ $17,3$ 976 11110 1120 214 $Heptancarbonsäure(2)$ $177,3$ 976 1110 1130 217 $Heptancarbonsäure(2)$ $177,3$ 976 1110 1130 217 $Heptancarbonsäure(1)$ $177,3$ 976 1100 1130 217 $Me Hexancarbonsäure(1)$ $177,3$ 976 $100,4$ 1133 207 $Me Hexancarbonsäure(1)$ $100,2$ $100,2$ $100,4$ 1133 202 $Me Hexancarbonsäure(1)$ $100,2$ $100,2$ $100,2$ $100,2$ $100,2$ 203 $Me Hexancarbonsäure(1)$ $100,2$ $100,2$ $100,2$ $100,2$	2. Me. Pentancarhoncante. (2) * . **	C 71 7	100		2010		1048		IUC
Cyclohexanearbonsäure (1) 107 101 196 1301 247 Me -Cyclopentancarbonsäure (1) 925 1064 1186 1301 247 Heptancarbonsäure (1) 1054 1205 1301 247 Heptancarbonsäure (1) 177.3 976 111.0 1301 247 Heptancarbonsäure (2) 177.3 976 111.0 1134 1217 214 Heptancarbonsäure (2) 177.3 976 111.0 1133 107 214 Heptancarbonsäure (2) 177.3 976 111.0 1130 213 213 Subcloheptan-(2, 2, 1)-earbonsäure (1) 177.3 976 1102 1133 205 Bicycloheptan-(2, 2, 1)-earbonsäure (1) 1002 1002 1064 1173 205 225 Bicycloheptan-(2, 2, 1)-earbonsäure (1) 1002 1002 1177 213 205 Bicycloheptan (2, 2, 1)-earbonsäure (1) 1057 1025 1275 235 235 Bicycloheptan (2, 2, 2) <t< td=""><td>2-Me-Pentancerhoneaure(2)* **</td><td>1./4.</td><td>860 8</td><td></td><td>4/4 9/8</td><td></td><td>0501</td><td></td><td>010</td></t<>	2-Me-Pentancerhoneaure(2)* **	1./4.	860 8		4/4 9/8		0501		010
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J and a successfunction (J)	×	2001	101	ля й	1186	6/01 1300	1000	800
r-we-cystoptantantonsature (1) 925 1004 1101 1104 237 Heptanearbonsäture (1) 177.3 976 1134 1217 214 Heptanearbonsäture (1) 177.3 976 1110 1190 214 Heptanearbonsäture (2)* 177.3 976 1110 1190 214 Heptanearbonsäture (2)* 177.3 976 1110 1190 214 Heptanearbonsäture (2)* 168.6 936 1064 1133 207 Sicyclobeptan (2, z, 1)-carbonsäture (1) 1092 1173 1265 1295 259 Bicyclobeptan (2, z, 1)-carbonsäture (1) 1092 1074 1173 1265 1275 235 Bicyclobeptan (2, z, 1)-carbonsäture (1) 1072 1074 1173 1265 1275 128 237 Bicyclobeptan (2, z, 1)-carbonsäture (1) 1173 1092 1173 1265 1275 128 237 Bicyclobeptan (2, z, 1)-carbonsäture (1) 1155 1173 1265 1275 1275 128 216 Octanarearbonsäture (2) 004 1			1001	TTOF		1.001	-0	60C7	067
Heptancarbonsäure (1)Io5412051301247Heptancarbonsäure (2)*9906111011190214Heptancarbonsäure (3)177,397611101190214Heptancarbonsäure (3)177,397611101190210Heptancarbonsäure (3)177,397611101190210Heptancarbonsäure (3)168.6936100411332032.Me-Hexancarbonsäure (1)168.6936100211732033.Me-Hexancarbonsäure (1)1002100211732052135.Me-Hexancarbonsäure (1)1002100211732052141.Hexancarbonsäure (1)1155100211732052171.Hexancarbonsäure (1)1155100211732052172.He Cyclopertancarbonsäure (1)1155100211732052172.He Cyclopertancarbonsäure (1)1155100211732052172.He Cyclopertancarbonsäure (2)1004123212652252.Me-Heptancarbonsäure (2)1004123212652162.Me-Heptancarbonsäure (2)1004123212652162.Me-Heptancarbonsäure (2)1004123212652162.Me-Heptancarbonsäure (2)1004123212652162.Me-Heptancarbonsäure (2)1004123212652162.Me-Heptancarbonsäure (2)1004123212651262.Me-Heptancarbo	1-Me-Uyciopentancarbonsaure-(1)			925		1004	IQII	1104	259
Heptancarbonsäure $\{2\}^*$ 99611341277221Heptancarbonsäure $\{3\}^*$ 177.397611101190210Heptancarbonsäure $\{3\}^*$ 97611021133210Heptancarbonsäure $\{3\}^*$ 97611021133210Heptancarbonsäure $\{2\}^*$ 93610541133203S.Me-Hexancarbonsäure $\{2\}^*$ 94810921173213S.Me-Hexancarbonsäure $\{2\}^*$ 168.693610741133203Bicyclohexancarbonsäure $\{1\}$ 1092127813961411310I.Hexancarbonsäure $\{1\}$ 1032103211731265247Sicyclohexancarbonsäure $\{1\}$ 103412321310247I.He.Cyclopentancarbonsäure $\{1\}$ 10341232213Octancarbonsäure $\{2\}$ 109412321310247Octancarbonsäure $\{3\}$ 107411731265213Octancarbonsäure $\{4\}$ 1039107210941232213Octancarbonsäure $\{4\}$ 1094123213101402222Octancarbonsäure $\{3\}$ 1094123213051265213Octancarbonsäure $\{4\}$ 10391072109412321316Octancarbonsäure $\{4\}$ 1030112213051265213Octancarbonsäure $\{4\}$ 103011221326136136Octancarbonsäure $\{4\}$ 103011221322195IHeptancarbonsäure $\{4\}$ 1027 </td <td>Hentancarhonsänre-(1)</td> <td></td> <td>TOSA</td> <td></td> <td>1206</td> <td></td> <td>1301</td> <td></td> <td>247</td>	Hentancarhonsänre-(1)		TOSA		1206		1301		247
Heptancarbonsäure (3) Heptancarbonsäure (4)* 177.3 976 970 1110 1100 1190 113 210 210Heptancarbonsäure (4)* Heptancarbonsäure (4)* 177.3 976 970 1100 1102 1190 113 210 	Hentancarhonsäure-(2) *		900		62-1 121		- 2-5-		120
Herptancarbonsaure (q)*177397011021130200 $Herbararbonsaure (q)*1002100411331972-Me-Hexancarbonsaure (q)*168.6936107411332033-Me-Hexancarbonsaure (q)*168.6936107411332033-Me-Hexancarbonsaure (q)*168.6936107411332033-Me-Hexancarbonsaure (q)*168.6936107411332033-Me-Hexancarbonsaure (q)*1002102212752552551-Me-Cyclopentancarbonsäure (q)10561173126512722471-Me-Cyclopentancarbonsäure (q)10571173126512722471-Me-Cyclopentancarbonsäure (q)1155131014022221-Me-Cyclopentancarbonsäure (q)1054123213162221-Me-Cyclopentancarbonsäure (q)1051113212652131-Me-Heptancarbonsäure (q)10721094123213162221-Me-Heptancarbonsäure (q)10721092112612692062-Me-Heptancarbonsäure (q)100361116212251954-Me-Heptancarbonsäure (q)10361116212351954-Me-Heptancarbonsäure (q)100361116212321951-Me-Cycloheptancarbonsäure (q)100361116212321951-Me-Cycloheptancarbonsäure (q)100361115012221951-Me-Cycloheptancarbons$	Hentanrarboneaure-(2)	C 441	940		4CTT		11100		110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hentarcarbonesure-(1) [*]	C-//7	0/6		0111		0611		414 610
$\begin{array}{c} -2^{\text{Me-Hazancationusature-}(z)}{3^{-1}} & 0.00, 0.0$	a Mo Unwannehound (4)	-60 K	916		1011		0011		
3-inve-fickatioanisaure-(3) 940 1074 1151 203 3 -inve-fickationsaure-(1) 1092 1072 1278 1396 1411 319 3 -inve-fickationsaure-(1) 1002 1072 1173 1265 1272 255 1 -Me-Cyclopentancarbonsäure-(1) 1155 1017 1173 1265 1272 255 1 -Me-Cyclopentancarbonsäure-(1) 1155 1310 1402 247 247 0 -tancarbonsäure-(2) 1094 1232 1316 222 247 0 -tancarbonsäure-(2) 1094 1232 1316 222 247 0 -tancarbonsäure-(2) 1094 1232 1316 222 217 0 -tancarbonsäure-(2) 1072 1072 1225 195 213 0 -tancarbonsäure-(2) 1072 1072 1122 1225 195 0 -tancarbonsäure-(2) 1036 1166 1225 195 2123 0 -tancarbonsäure-(3) 1005 1122 1056 1225 <		0.001	950		400T		CC11		161
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-INE-INEXAIICATIONISAUIC-(3)		940		1074	c	1151		203
1-Me-Cyclohexancarbonsäure-(1) 1026 1183 1275 1285 259 1-Et-Cyclopentancarbonsäure-(1) 1017 1017 1173 1265 1272 247 1-Et-Cyclopentancarbonsäure-(1) 1155 1310 1402 247 222 Octancarbonsäure-(1) 1054 1232 1316 222 213 Octancarbonsäure-(2) 1094 1232 1316 222 203 Octancarbonsäure-(3) 1072 1092 1205 1269 208 Octancarbonsäure-(3) 1051 1192 1269 208 208 Octancarbonsäure-(4) 1030 1162 1256 138 109 3-Me-Heptancarbonsäure-(4) 1036 1162 1225 199 199 4-Me-Heptancarbonsäure-(1) 1027 1122 1278 1383 261 1-Me Cycloheptancarbonsäure-(1) 1027 1122 1322 199 192 1-Me Cycloheptancarbonsäure-(1) 1-Me Cycloheptancarbonsäure-(1) 1122 1301 1420 292	bicycloheptan-(2,2,1)-carbonsaure-(1)			2001		1278	1398	1411	319
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-Me-Cyclohexancarbonsäure-(1)			102.6		1183	1275	1285	259
$\begin{array}{c cccc} Cctancarbonsäure-(1) \\ Cctancarbonsäure-(2) \\ Cctancarbonsäure-(2) \\ Cctancarbonsäure-(3) \\ Cctancarbonsäure-(3) \\ Cctancarbonsäure-(4) \\ Cctancarbonsäure-(4) \\ Cctancarbonsäure-(4) \\ Cctancarbonsäure-(2) \\ Cctancarbonsäure-(1) \\ Cctancarbo$	1-Et-Cyclopentancarbonsäure-(1)			LIOI		1173	1265	1272	255
Octancarbonsäure-(2) 1004 1232 1316 222 Octancarbonsäure-(2) 1004 1232 1316 222 Octancarbonsäure-(3) 1072 1072 1269 208 Octancarbonsäure-(4) 1030 1162 1269 208 2-Me-Heptancarbonsäure-(2) 1030 1156 1225 199 3-Me-Heptancarbonsäure-(2) 1036 1162 1225 199 q -Me-Heptancarbonsäure-(3) 1027 1036 1162 1225 199 q -Me-Heptancarbonsäure-(1) 1027 1122 1278 1383 261 $1-Me$ -Cycloheptancarbonsäure-(1) 1222 1383 261 195 $1-Me$ -Cycloheptancarbonsäure-(1) 1122 1278 1383 261 $1-Me$ -Cycloheptancarbonsäure-(1) 1222 1383 261 195 $1-Me$ -Cycloheptancarbonsäure-(1) 1222 1383 261 $1-Me$ -Cycloheptancarbonsäure-(1) 1222 1383 261 $1-Me$ -Cycloheptancarbonsäure-(1) 1222 1383 261 $1-Me$ -Cycloheptancarbonsäure-(1) 1228 1301 1420 292	Octancarhonsänre-(1)		1155		1310		1 402		247
Octancarbonsäure-(3) 1072 1205 1285 213 Octancarbonsäure-(4) 1061 1192 1269 208 2-Me-Heptancarbonsäure-(3) 1030 1156 1225 199 3-Me-Heptancarbonsäure-(3) 1036 1162 1225 199 4-Me-Heptancarbonsäure-(4) 1027 1162 1225 199 4-Me-Heptancarbonsäure-(1) 1027 1122 1278 1383 261 $1-Me-Cyclohexancarbonsäure-(1)$ 1122 1122 1383 261 $1-Me-Uycloheptancarbonsäure-(1)$ 1122 1128 1301 1420 292	Octancarbonsäure-(2)				1232		1316		222
Octanearbonsäure-(4) 1061 1192 1269 203 2-Me-Heptancarbonsäure-(4) 1030 1156 1225 195 3-Me-Heptancarbonsäure-(3) 1036 1162 1225 199 4-Me-Heptancarbonsäure-(1) 1027 1050 1150 1223 199 $1-Me-Cyclohexancarbonsäure-(1)102711221150127813832611-Me-Cycloheptancarbonsäure-(1)1-Me-Cycloheptancarbonsäure-(1)122813832611-Me-Cycloheptancarbonsäure-(1)1122112813011420292$	Ortenformeanthe (2)		CEVI		1005		1285		616
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Octantarhonsaure-(4)		7/or		2011 Co71		0961		C13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a. Mo. Hontoneorchonesiure-lab		1001				1005		JOE
3-we-raptancarbonsaure-(3) 1030 1102 1235 199 4-Me-Heptancarbonsäure-(4) 1027 1027 1222 195 1-Heptancarbonsäure-(1) 1027 1122 1278 1383 261 1-Me-Cycloheptancarbonsäure-(1) 1.22 1383 261 1320 1420 292 1-Me-Uscloheptancarbonsäure-(1) 1.28 1128 1301 1420 292			0501		0/11		- 002 (27.1		ςθ ¹ 201
4-Me-Heptancarbonsäure-(4) 1027 1150 1222 195 1-Et-Cyclohexancarbonsäure-(1) 1122 1122 1383 261 1-Me-Cycloheptancarbonsäure-(1) 1320 1383 261 1-Me-Cycloheptancarbonsäure-(1) 1320 1420 292	3-Me-rieptancarponsaure-(3)		1030		1102		1235		661
I-Et-Cyclohexancarbonsäure-(1) II22 I278 I383 261 1-Me-Cycloheptancarbonsäure-(1) 1-Me-Cycloheptancarbonsäure-(1) 1320 1420 292	4-Me-Heptancarbonsaure-(4)		1027		1150	4	1222	ł	195
1-Me-Cycloheptancarbonsäure-(1) 1-Me-Bicycloheptan-(2,2,1)-carbonsäure-(1) 1128 1128 1301 292	1-Et-Cyclohexancarbonsäure-(1)			1122		1278		1383	26I
1-Mie-Bicycloheptan-(2,2,1)-carbonsäure-(1) 1128 1301 1420 292	1-Me-Cycloheptancarbonsäure-(1)					1320			
	1-Me-Bicycloheptan-(2,2,1)-carbonsäure-(1)			1128		1301		1420	202

164

;

.

TABELLE II

. .

		تشتيا بالجريشية ومرا	A CONTRACTOR OF									RE	TE	EN	TI	ON	is)	DA	TE	N	UN	D S	5T)	RU	K	rU.	R	СН	EN	419	5CI	ſ
	292	300	250	222	213	208	207	195 201	661	194	255																					
	1420	1451									1455																					
		and the second secon	1504	1414	1382	1363	1357	1323	1327	1306			1605	1515	1480	1961	1451	1420	1424	1397	1368	2071										
) 	1301	1330			•						1353	6/C1																				
		and the second secon	1413	1331	1303	1287	1282	1254	1254	1236			1511	1432	1403	1386	1379	1355	1355	1331	1324	1613	1532	1503	1485	1477	1473	1454	1454	1428	1416	
	1128	1151	and the second second second						۰.		1200	•																				
		and the second	1254	1192	1169	1155	1150	1128	1128	1112																						
	1-Mie-Bicycloheptan-(2,2,1)-carbonsäure-(1)	bicyclooctan-(3,3,0)-carbonsäure-(1)	ANAVARAN NORTHCATDONSAULO-(1) VARIAN ANAVARAN ANAVARAN ANAVARAN ANAVARAN ANAVARAN ANAVARAN ANAVARAN ANAVARAN A	Nonancarbonsäure-(2)	Nonancarbonsäure-(3)	Nonancarbonsäure-(4)	Nonancarbonsäure-(5)	2-Me-Octancarbonsäure-(2)	3-Me-Octancarbonsäure-(3)	4-Me-Octancarbonsäure-(4)	1- <i>n</i> -FT-Cyclohexancarbonsäure-(1) 1-Ft-Ficwelchentsn-(2-2-1)-cs-thoneäure-(2)	(1) Annocroating (1(2(2)) rendering for any a	Decancarbonsäure-(1)	Decancarbonsäure-(2)	Decancarbonsäure-(3)	Decancarbonsäure-(4)	Decancarbonsäure-(5)	2-Me-Nonancarbonsäure-(2)	3-Me-Nonancarbonsäure-(3)	4-Me-Nonancarbonsäure-(4)	5-Me-Nonancarbonsäure-(5)	Undecancarbonsäure-(1)	Undecancarbonsäure-(2)	Undecancarbonsäure-(3)	Undecancarbonsäure-(4)	Undecancarbonsäure-(5)	Undecancarbonsäure-(6)	2-Me-Decancarbonsäure-(2)	3-Me-Decancarbonssure-(3)	4-Me-Decancarbonsaure-(4)	5-Me-Decancarbonsaure-{5)	

ER VERBINDUNGEN. I.

J. Chromatog., 14 (1964) 157–177

165

solchen, in denen nur Verbindungen der gleichen C-Zahl vorkamen. Das Chromatogramm der *n*-Paraffine, das zur Bestimmung der Indices benötigt wird, wurde bei wichtigen Messungen sowohl vorher wie hinterher gemessen, um die Langzeitkonstanz der Geräteparameter zu kontrollieren. Bei nicht zu peakreichen Chromatogrammen wurden die *n*-Paraffine den Gemischen direkt zugesetzt. Bei keiner der angewandten Methoden wurden grössere Streuungen als ± 1 Indexeinheit beobachtet. Naturgemäss sind die Streuungen bei sehr kleinen Retentionsvolumina etwas grösser, wenn bei isothermer Arbeitsweise über einen grösseren C-Zahlbereich hinweg chromatographiert wird.

Die Indexwerte in apolaren stationären Phasen können dazu benutzt werden, um mit Hilfe der Troutonschen Regel die Siedepunkte der betreffenden Verbindungen aus ihnen zu berechnen, vgl. KOVATS¹¹. Fig. 3 zeigt den linearen Zusammenhang zwischen den Siedepunkten und den Retentionsindices in der apolaren stationären Phase Squalan für 9 Carbonsäureester, deren Siedepunkte durch Möller¹⁷ nach COTTRELL bestimmt wurden. Ausserdem wurden in der gleichen Figur die Retentionsindices der Alkancarbonsäure-(1)-methylester gegen deren Siedepunkte¹⁸ aufgetragen.

Die beiden Geraden haben verschiedene Steigungen, sind allerdings auch nicht für die gleichen C-Zahlbereiche gültig. Für den Zusammenhang zwischen Index und Siedepunkt ergeben sich für die beiden Geraden aus dem Diagramm folgende Gleichungen:

$$IS_{120} = 4.07 (t_s + 60.7)$$
 verzweigte Alkancarbonsäureester $^{7}S_{120} = 4.89 (t_s + 21.6)$ Alkancarbonsäure-(1)-ester.

TABELLE III

ZUSAMMENSTELLUNG DER RETENTIONSINDICES GLEICHER ISOMERENTYPEN NACH STEIGENDER C-ZAHL

Methylester der	Sdp. °C	Squalan 120°	Polypropylen- glykol 120°	Polypropylen- sebazat 130°	ΔΙ 1PPS 1S
² 3utancarbonsäure-(1)	109 3	760	000	006	
Pentancarbonsäure-(1)	147.3	700 840	1010	1007	248
Hexancarbonsäure-(1)	1728	0.49	1010	1108	246
Heptancarbonsäure ₍₁₎	173.0	1054	1200	1201	247
Octancarbonsäure-(1)	214	1155	1310	1402	- 77
Nonancarbonsäure-(1)	224	1254	7 J 13	1504	250
Decancarbonsäure-(1)	4	74	1511	1605	-30
Undecancarbonsäure-(1)			1613	1705	
Pentancarbonsäure-(2)	-	804	945	1027	223
Hexancarbonsäure-(2)	•	899	1038	1121	222
Heptancarbonsäure-(2)		996	1134	1217	221
Octancarbonsäure-(2)		1094	1232	1316	222
Nonancarbonsäure-(2)		1192	1331	1414	222
Decancarbonsäure-(?)			1432	1515	
Undecancarbonsäuze-(2)			1532		
Pentancarbonsäure-(3)	•	796	936	1018	222
Hexancarbonsäure-(3)		884	1020	1100	216
Heptancarbonsäure-(3)		976	1110	1190	214
Octancarbonsäure-(3)		1072	1205	1285	213
Nonancarbonsaure-(3)		1109 .	1303	1382	213
Decancarbonsaure-(3)			1403	1400	
Undecancarbonsaure-(3)			1503		
Heptancarbonsäure-(4)		970	1102	1180	210
Octancarbonsäure-(4)		1061	1192	1269	208
Nonancarbonsäure-(4)		1155	1287	1303	208
Decancarbonsaure-(4)			1380	1401	
Undecancarbonsaure-(4)			1405		
2-Me-Propancarbonsäure-(2)		654	789	854	200
2-Me-Butancarbonsäure-(2)		763	895	968	205
2-Me-Pentancarbonsäure-(2)		8.17	974	1048	201
2-Me-Hexancarbonsaure-(2)		936	1004	1133	197
2-Me-Meptancarbonsaure-(2)		1030	1150	1223	195
2-Me-Octancarbonsaure-(2)		1120	1234	1343	195
2-Me-Nonancarbonsäure-(2)			*333 T454	*'}**	
2-MC-Decancar bondare-(1)			-TJT		
3-Me-Pentancarbonsäure-(3)		869	998	1079	210
3-Me-Hexancarbonsäure-(3)		948	1074	1151	203
3-Me-Heptancarbonsäure-(3)		1036	1102	1235	199
3-Me-Octancarbonsaure-(3)		1120	1254	1527	199
3-Me-Nonancardonsaure-(3)			1555	1420	
3-Me-Decancardonsaure-(3)			×404		
4-Me-Heptancarbonsäure-(4)		1027	1150	1224	197
4-Me-Octancarbonsäure-(4)		1112	1236	1306	194
4-Me-Nonancarbonsäure-(4)			1331	1397	
4-Me-Decancarbonsäure-(4)			1428		

G. SCHOMBURG

ጥ	۸	Þ	T	Ť	т	F	T	υ
1.	<i>.</i>	. 12	Ľ		1	æ	- 1	¥.

Mathylester der	Squalan 150°	Ucon 150°	Sucrose 135°	Polypro- pylen- scbazat 150°	δI/δT in PPS	ΔΙ I ^{PPS} IS
Cyclopentancarbonsäure	902	1080	1105	1196	+ 0.20	294
r-Me-Cyclopentancarbonsäure-(1)	925	1084	1105	1184	0.15	259
I-Et-Cyclopentancarbonsäure-(I)	1017	1173	1190	1272	0.36	255
Cvclohexancarbonsäure-(1)	1011	1186	1208	1309	0.44	302
1-Me-Cyclohexancarbonsäure-(1)	1026	1183	1198	1285	0.48	259
I-Et-Cyclohexancarbonsäure-(I)	1122	1278	1292	1383	0.60	261
1-n-Pr-Cyclohexancarbonsäure-(1)	1200	1353	1368	1455	0.56	255
1-n-Bu-Cyclohexancarbonsäure-(1)	1285	1439	1453	1537	0.60	252
1-Me-Cycloheptancarbonsäure-(1)	-	1320				
Bicycloheptan-(2,2,1)-carbonsäure-(1)	1092	1278	1303	1411	0.64	319
1-Me-Bicycloheptan-(2,2,1)-carbonsäure-(1)	1128	1301	1321	1420	0.64	292
1-Et-Bicycloheptan-(2,2,1)-carbonsäure-(1)		1379				
Bicyclooctan-(3,3,0)-carbonsäure-(1)	1151	1330	13 48	1451		300

RETENTIONSINDICES DER CYCLOALKANCARBONSÄUREESTER

Die gemessenen Indexwerte der verschiedenen Carbonsäuremethylester in apolaren und polaren stationären Phasen sind in den Tabellen II-IV niedergelegt. Aus diesen Tabellen sind folgende Regeln zu entnehmen:

I. Wandert die Carboxylgruppe durch die unverzweigte Kohlenstoffkette, so nehmen die Retentionsindices ab, je mehr die funktionelle Gruppe in die Mitte wandert.

2. Eine besonders starke Abnahme des Retentionsindex ist beim Übergang von den 1- zu den 2-Carbonsäureestern zu beobachten, während der Unterschied beim Übergang von den 2- zu den 3-, 4- und 5-Alkancarbonsäuren geringer ist.

3. Die Reihenfolge der einzelnen acyclischen Isomeren wird in polaren Säulen auch bei wechselnder Polarität nicht geändert.

4. Bei den methylverzweigten Carbonsäureestern — die Methylgruppe steht immer amgleichen Kohlenstoffatom wie die Carboxylgruppe — hat der 3-Methylalkancarbonsäure-(3)-ester den höheren Retentionsindex als der 2-Methylalkancarbonsäure-(2)-ester. Der 4-Methylalkancarbonsäure-(4)-ester hat wieder einen kleineren Retentionsindex.

5. Die ΔI -Werte (ΔI = Indexdifferenz der gleichen Substanz zwischen der apolaren stationären Phase Squalan und der polaren stationären Phase Polypropylensebazat) sind am grössten für die Alkancarbonsäure-(1)-ester. Sie nehmen ab, je mehr der Carboxylrest in die Mitte der Kohlenstoffkette wandert. Die ΔI -Werte der methylverzweigten Isomeren sind wesentlich niedriger als die der unverzweigten.

6. Bei steigender Kohlenstoffkettenlänge steigen die Retentionsindices um 100 Einheiten pro Kohlenstoffatom, während die ΔI -Werte konstant sind. Zum Teil starke Abweichungen hiervon sind bei den Anfangsgliedern zu beobachten. Sie sind umso grösser, je mehr die Carboxylgruppe in die Mitte wandert. Noch ausgeprägter sind diese Abweichungen bei den methylverzweigten Alkancarbonsäuren.

7. Die cyclischen Carbonsäureester haben höhere Indices und ΔI -Werte als die offenkettigen gleicher C-Zahl, entsprechend den Verhältnissen bei den Kohlenwasserstoffen.

8. Bei Mischungen isomerer Carbonsäureester mit grösserem C-Zahlbereich gibt es bei Abwesenheit von Alkancarbonsäure-(1)-estern C-Zahl-Überschneidungen erst zwischen dem C_{10} - und dem C_{11} -Bereich.

Die bei der Verdampfung eines Stoffes umgesetzte Verdampfungsenthalpie bzw. die bei der Lösung oder Verdünnung einer Verbindung in einer anderen flüssigen Phase auftretenden Lösungsenthalpien sind ein Mass für die zwischen den Molekülen wirkenden Kohäsionskräfte. Zwischen der Lösungsenthalpie ΔH_m und dem Retentionsvolumen besteht ein direkter Zusammenhang über:

$$V_R = V_G + \frac{N_L \cdot RT}{\gamma \infty \cdot \rho^0} \cdot V_L$$

worin V_R = Gesamtretentionsvolumen,

 V_G = Gasvolumen der Säule,

 V_L = Flüssigkeitsvolumen der Säule,

 γ^{∞} = Aktivitätskoeffizient bei unendlicher Verdünnung des gelösten Stoffes,

 N_L = Mole stationärer Flüssigkeit pro Volumeneinheit,

 p^0 = Dampfdruck der reinen Substanz (gelöster Stoff),

und

$$\ln p^0 = -\frac{\Delta H_v}{RT} + \text{const. sowie } \ln \gamma^\infty = \frac{\Delta H_m}{RT}$$

worin ΔH_v = Verdampfungsenthalpie,

 $\Delta H_m =$ Mischungs- oder Lösungsenthalpie.

Über die Retentionsdaten werden somit Untersuchungen zur intermolekularen Wechselwirkung zwischen stationärer Phase und gelöster Substanz möglich. Die hierbei auftretenden Kräfte können sehr verschiedener Art sein. In der vorliegenden Arbeit ist es überwiegend die Dipol-Dipol-Wechselwirkung und der Einfluss der Abschirmung auf diese, die zusammen mit der immer vorhandenen Dispersionswechselwirkung die Flüchtigkeit der Carbonsäureester über der jeweiligen stationären Phase bestimmt. Abschirmung liegt vor, wenn die Wahrscheinlichkeit vermindert wird, dass die Dipole in günstige Lage zueinander kommen, vgl. EISTERT²⁰.

In apolaren stationären Phasen erfolgt die gaschromatographische Trennung von apolaren wie von polaren Substanzen entsprechend ihren Siedepunkten, so dass die auftretenden Lösungsenthalpien zumindest proportional den Verdampfungsenthalpien sind. In polaren stationären Phasen kommen die Dipolwechselwirkungskräfte hinzu, wenn die gelöste Verbindung eine funktioneile Gruppe enthält. Die Interpretation gaschromatographischer Daten, die an apolaren stationären Phasen gewonnen wurden, führt zu Ergebnissen, die den durch Vergleich von Siedepunkten gewonnenen äquivalent sind, vgl. HÜCKEL²¹. Das Studium der in polaren stationären Phasen zusätzlich auftretenden Dipolwechselwirkung, die ausserdem starken sterischen Einflüssen unterliegt, ist in dem KovATS-schen System an den ΔI -Werten möglich, vgl. 5. Die Grösse der ΔI -Werte hängt natürlich auch von der Intensität der Wechselwirkung zwischen stationären Phase und gelöster Substanz ab, so dass etwas über die Polarität der stationären Phase ausgesagt werden muss, wenn die ΔI -Werte zur Charakterisierung von Substanzen benutzt werden sollen. Für die Diskussion der ΔI -Werte wird die stark vereinfachende Annahme getroffen, dass die Dispersionskräfte einer Substanz in der apolaren wie in der polaren stationären Phase gleich sind. Der Anteil der Dispersionsenergie an der gesamten Kohäsionsenergie wird auf diese Weise aus den ΔI -Werten eliminiert. Bei der Betrachtung der Indexwerte selbst ist bei polaren stationären Phasen immer mit der Überlagerung beider Effekte zu rechnen. Entsprechend den vorstehenden theoretischen Überlegungen lasst sich zu dem in den obengenannten 8 Regeln zusammengefassten Eigenheiten der gaschromatographischen Daten folgendes sagen:

Zu I. Die Abnahme des Siedespunktes bzw. des Retentionsindexes in der apolaren Säule mit der Wanderung des Carboxylrestes in die Mitte des Moleküls ist auf die Wirkung des Dispersionseffektes zurückzuführen. Auch die verzweigten Kohlenwasserstoffe, mit dem entsprechenden Kohlenstoffgerüst, deren Kohäsion nur auf Dispersionskräfte zurückzuführen ist, zeigen eine ähnliche Abstufung der Flüchtigkeit (Tabelle V).

ETENTIONSINDICES DER PEN'	TANCARBOI	NSÄUREESTER UND	HEXANI
Methylester	IS120		15 ₆₅
Pentancarbonsäure-(1)	849	<i>n</i> -Hexan	600
Pentancarbonsäure-(2)	804	2-Me-Pentan*	570
Pentancarbonsäure-(3)	796	3-Me-Pentan	585

TABELLE V

* Das 2-Me-Pentan hat das gleiche Kohlenstoffgerüst wie die Pentancarbonsäure-(2), wenn das Kohlenstoffatom der Carboxylgruppe mit zum betrachteten Kohlenstoffgerüst gerechnet wird.

Die Umkehrung bei den Retentionsindices von 2-Me-Pentan und 3-Me-Pentan gegenüber den entsprechenden Carbonsäureestern deutet darauf hin, dass bei den letzteren ein Einfluss der funktionellen Gruppe –COOCH₃ auf die Dispersionswechselwirkung anzunehmen ist, der von dem einer Methylgruppe abweicht. Die Dipolkräfte, die in polaren flüssigen Phasen zu den Dispersionskräften hinzukommen, unterliegen in starkem Masse der Abschirmung durch die der funktionellen Gruppe benachbarten Alkylgruppen, während bei den Dispersionskräften der Kohlenwasserstoffe durch die Verzweigung ungünstige sterische Verhältnisse für die Wechselwirkung aller Atome geschaffen werden. Es gibt keine ausgezeichnete Stelle der Wechselwirkung.

Zu 2. So wird der besonders starke Sprung zwischen den Retentionsindices der Methylester der Pentancarbonsäure-(1) und Pentancarbonsäure-(2) bei der Dipolwechselwirkung durch die Abschirmung der Methylgruppe, die an die Stelle eines Wasserstoffatoms am α -C-Atom getreten ist, hervorgerufen; beim Dispersionseffekt erstreckt sich die Wirkung einer Verzweigungsstelle auf die Wechselwirkung aller Atome des Moleküls. Ein direktes Mass für die Abschirmung der funktionellen Gruppe durch die benachbarten Alkylgruppen kann in der Abhängigkeit der ΔI -Werte im System Squalan-Polypropylensebazat von der Art der abschirmenden Alkylgruppen gefunden werden, vgl. auch 5. So findet man für alle Alkancarbonsäuren-(1) einen ΔI -Wert von etwa 248, für alle Alkancarbonsäuren-(2) von 222. Es ist leicht einzusehen, dass höhere ΔI -Werte geringere Abschirmung der funktionellen Gruppe bedeuten. Die Differenz von 25 Einheiten im ΔI -Wert ist auf den dargelegten Methylgruppeneffekt zurückzuführen. Natürlich spielt auch die Länge des anderen Alkyl-

170

restes dabei eine Rolle, aber nur unterhalb einer Kettenlänge von C₄. Die Abschirmung einer Alkylgruppe als Inkrement des ΔI -Wertes wird daher aus den ΔI -Werten mit möglichst langem Alkylrest abgeleitet. Bei den Alkancarbonsäuren-(3) werden die ΔI -Werte etwa von der Octancarbonsäure-(3) an, in der neben die Äthylgruppe eine Pentylgruppe am α -C-Atom steht, konstant. Auf diese Weise wurden die in Tabelle VI angeführte Abschirmungsinkremente für die ΔI -Werte ermittelt.

TABELLE VI

ABSCHIRMUNGSINKREMENTE FÜR DIE ΔI -werte (vgl. hierzu Tabelle III)

Alkylgruppe	Inkrement*
СНз	25
$C_2 \tilde{H_5}$	34
$n-C_3H_7$	40
$n-C_4H_9$	41

* Abnahme des ΔI -Wertes beim Ersatz eines Wasserstoffatoms durch die betreffende Alkylgruppe, wenn der andere Alkylrest vom α -C-Atom länger als *n*-Pentyl ist.

Betrachtet man dagegen die Abnahme der Indices selbst und nicht der ΔI -Werte beim Übergang von der Alkancarbonsäure-(1) zur Alkancarbonsäure-(2), so erhält man erst bei der C₉-Säure eine konstante Verminderung während die ΔI -Werte in allen 5 C-Zahlbereichen konstant sind.

Übergang der 14 ₁₂₀ -Werte bei	C ₆	C7	C ₈	C ₉	C ₁₀
Wanderung des –COOCH ₃ -Restes aus der 1- in die 2-Stellung	45	53	58	бі	б2

Wahrscheinlich ist dies auf eine mit der Kettenlänge durch den Einfluss der Kettenverzweigung nicht linear steigende Dispersionsenergie zurückzuführen.

Zu 3. Eine andere Reihenfolge der isomeren Carbonsäureester ist in stärker polaren Säulen nur zu erwarten, wenn ein anderer Typ intermolekularer Wechselwirkung vorliegt oder besonders sterische Verhältnisse bei den Molekülen der stationären Phase einen Einfluss haben. Bei den verwandten stationären Phasen liegen Dipol-Dipol- und Dispersionswechselwirkung in der gleichen Grössenordnung, so dass eine Überkompensation des Dispersionseffektes durch Dipol-Dipol-Wechsel wirkung unwahrscheinlich ist. Ausserdem wirken beide Effekte in der gleichen Richtung.

Zu 4. Kommt durch eine Verzweigung der Kohlenstoffkette eine Methylgruppe am α -C-Atom hinzu, so ist gegenüber den Alkancarbonsäuren-(2) einerseits mit einer weiteren Verminderung der Dispersionskräfte andererseits mit einer Verstärkung der Abschirmung bei der Dipolwechselwirkung zu rechnen. Wandert die Gruppierung

durch die Kohlenstoffkette, so nehmen die ΔI -Werte nicht weiter ab, da die funktionelle Gruppe durch die benachbarte Methylgruppe schon abgeschirmt ist und für die Dispersionswechselwirkung die Störung, die durch die Methylgruppe hervorgerufen wird, nicht wesentlich vergrössert wird. Der Einfluss der Stellung dieser Gruppierung auf den Dispersionseffekt ändert sich nur wenig. Trotzdem haben die mittelständigen Isomeren niedrigere Indices.

Zu 5. Eine Gegenüberstellung der ΔI -Werte der unverzweigten und methylverzweigten C₉-Carbonsäureester zeigt den Einfluss der Wanderung der Carboxylgruppe und der Methylverzweigung auf die Abschirmungsverhältnisse (Tabelle VII).

Grosse ΔI -Werte bedeuten starke Wechselwirkung zwischen funktioneller Gruppe und stationärer Phase bzw. geringe Abschirmung der ersteren. Die schwächere Abschirmung der 3-Methylalkancarbonsäure-(3) gegenüber der 2- und der 4-Methyl-

Methylester der	ΔΙ	Methylester der	<u></u>
Octancarbonsäure-(1)	247		
Octancarbonsäure-(2)	222	2-Me-Heptancarbonsäure-(2)	195
Octancarbonsäure-(3)	213	3-Me-Heptancarbonsäure-(3)	199
Octancarbonsäure-(4)	208	4-Me-Heptancarbonsäure-(4)	195

TABELLE VII $\angle II$ -werte der C₀-carbonsäureester

alkancarbonsäure-(2) bzw. -(4) ist schwer zu verstehen. Vergleicht man nämlich die Summen der Abschirmungsinkremente der in beiden Molekülen vorhandenen Alkylgruppen, so ergibt sich kaum ein Unterschied:

Methyl + n-Propyl = 66 2 × Äthyl = 68 für 2-Methylpentancarbonsäure-(2)

Für die Vertauschung der Retentionszeiten der beiden Isomeren sind wahrscheinlich Unterschiede bei der Dispersionswechselwirkung verantwortlich.

Zu 6. Betrachtet man die Abhängigkeit der Retentionsindices einzelner Isomerentypen von der Kettenlänge (ohne dass sich in der Umgebung der funktionellen Gruppe etwas ändern würde), so wird der Einfluss der Abschirmung sowie der sterischen Eigenheiten des Moleküls auf die Retentionsindices noch einmal offenbar. Bei den Alkancarbonsäuren-(1) ändert sich im Bereich von C_6-C_{12} der Index ziemlich genau um die zu erwartenden 100 Einheiten pro C-Zahl. Auch die ΔI -Werte bleiben über den ganzen Bereich hinweg konstant. Bei den Alkancarbonsäuren-(2) wird erst von dem C_s-Isomeren ab eine konstante Indexdifferenz von 98-99 beobachtet, während die ΔI -Werte ziemlich konstant sind. Bei den Alkancarbonsäuren-(3) wird der Wert von 100 erst etwa im C_{10} -Bereich erreicht, vgl. hierzu Tabelle III. Hier zeigen allerdings auch die ΔI -Werte erst bei dem C₀-Isomeren konstante Werte. Ähnliches gilt für die Alkancarbonsäuren-(4). Noch ausgeprägter sind diese Verhältnisse bei den methylverzweigten Isomeren. Wenn also trotz gleicher Stellung der funktionellen Gruppe bzw. gleichartiger C-Kettenverzweigung erst von einer bestimmten Länge des Alkylrestes bzw. der Kohlenstoffkette die Indexdifferenzen von C-Zahl zu C-Zahl konstant werden, so kann das nur daran liegen, dass die strukturellen Einflüsse auf den Dispersionseffekt das ganze Molekül erfassen. In polaren flüssigen Fhasen kommt die verschiedenartige Abschirmung der für die Wechselwirkung entscheidenden Dipole durch Alkylreste verschiedener Länge zustande.

172

	Squalan 150°	δ1/δΤ	PPS 150°	ΔΙ	I _C — I _n * (Squalan)
Cyclopentan	599	+ 0.55	633	34	99
Cycloĥexan	688	+0.43	736	48	88
Cycloheptan	824	+0.45	889	65	124
Cyclooctan	94Ġ	+ 0.50	1029	83	14Ġ
Bicycloheptan-(2,2,1)	777	+ 0.45	851	74	77
Bicyclooctan-(3,3,0)	891	-+ 0.50	970	79	191

TABELLE VIII

RETENTIONSINDICES DER CYCLISCHEN KOHLENWASSERSTOFFE

* Indexdifferenz für den Übergang vom cyclischen zum acyclischen Kohlenwasserstoff in der stationären Phase Squalan.

Die ΔI -Werte ändern sich mit steigender Kettenlänge nicht so stark wie die Indexdifferenzen von C-Zahl zu C-Zahl, weil in den ΔI -Werten nur die Dipol-Dipol-Wechselwirkung erfasst wird, die von Propyl ab unabhängig von der Kettenlänge ist, da sie im Molekül lokalisiert und an ihr nur die funktionelle Gruppe selbst beteiligt ist.

Retentionsindices der cyclischen Carbonsäureester

Zu 7. Schon die cyclischen Kohlenwasserstoffe haben einen höheren Retentionsindex als die *n*-Paraffine. Ausserdem erhöht sich deren Retentionsindex beim Übergang von der apolaren zur polaren stationären Phase (Tabelle VIII). Hier gilt also die Annahme nicht, dass die Dispersionsenergie in beiden Phasen gleich ist.

Die ΔI -Werte der cyclischen Carbonsäureester sollten aus diesem Grunde ebenfalls um den entsprechenden Betrag höher als diejenigen der acyclischen Carbonsäureester sein (Tabelle IX).

Der Übergang vom acyclischen zum cyclischen Carbonsäureester (bei gleicher C-Zahl) zeigt, dass die Indexdifferenz wesentlich kleiner ist als bei den entsprechenden Kohlenwasserstoffen: 49 Indexeinheiten für den Übergang von Pentancarbonsäure- (\mathbf{I}) zu Cyclopentancarbonsäure und 99 Indexeinheiten für den Übergang von *n*-Pentan zu Cyclopentan.

Das ist wohl darauf zurückzuführen, dass die Wechselwirkung auf Grund des Dispersionseffektes durch die funktionelle Gruppe behindert wird; die Carboxylgruppe steht nämlich an einer Kettenverzweigung. Die ΔI -Werte der beiden Ringsysteme zeigen bei den Alkanen und bei den Alkancarbonsäureestern geringere Differenzen: 44 Indexeinheiten für den gleichen Übergang gegen 34.

Die abschirmende Wirkung von Alkylgruppen, die in a-Stellung zur Carboxyl-

TABELLE I	X
-----------	---

INDEXDIFFERENZ ZWISCHEN CYCLISCHEN UND ACYCLISCHEN CARBONSÄUREESTER

Methylester der	Squalan	PPS	ΔΙ	.,
Pentancarbonsäure-(1)	849	1097	248	•
Cyclopentancarbonsäure	49 898	93 1190	44 292	•
Hexancarbonsäure-(1)	952	1198	246	•
Cyclohexancarbonsäure	55 1007	102 1300	47 293	

G. SCHOMBURG

TABELLE X

 ΔI -werte der nicht alkylierten und lpha-alkylierten cyclischen ester

Methylester der	ΔI	Methylester der	ΔΙ	Differens
Cyclopentancarbonsäure	294	1-Me-Cyclopentancarbonsäure-(1)	259	35
		1-Et-Cyclopentancarbonsäure-(1)	254	30
		1-n-Pr-Cyclopentancarbonsäure-(1)	259	35
Cyclohexancarbonsäure	302	1-Me-Cyclohexancarbonsäure-(1)	259	43
-	-	1-Et-Cyclohexancarbonsäure-(1)	261	41
		1-n-Pr-Cyclohexancarbonsäure-(1)	255	47
		1-Bu-Cyclohexancarbonsäure-(1)	252	50
Bicycloheptan-(2,2,1)-carbonsäure	319	1-Me-Bicycloheptancarbonsäure-(1)	292	27
Bicyclooctan-(3,3,0)-carbonsäure	300			-

gruppe stehen, ist bei den cyclischen Estern stärker als bei den acyclischen, aber abhängig von den sterischen Verhältnissen.

Dies zeigt ein Vergleich der ΔI -Werte der nicht alkylierten und in α -Stellung alkylierten cyclischen Ester (Tabelle X). Die abschirmende Wirkung der einzelnen Alkylgruppen ist wenig abhängig von der Art der Alkylgruppe. Zusammenfassend sind folgende Einflüsse auf die ΔI -Werte der cyclischen Carbonsäureester festzustellen:

(a) Dipolwechselwirkung der Carboxylgruppe mit der polaren stationären Phase.

(b) Die abschirmende Wirkung von Alkylsubstitution auf diese Wechselwirkung.

(c) Unterschiede der Dispersionsenergien in polaren und apolaren stationären Phasen.

(d) Sterische Einflüsse der verschiedenen Ringtypen auf die Dipolwechselwirkung.

Die Abschirmung ist bei den cyclischen Carbonsäureestern so stark, dass z.B. in stärker polaren stationären Phasen die α -Methylverbindungen niedrigere Retentionsindices haben als die entsprechenden Grundkörper, obwohl sie die höhere C-Zahl besitzen. Die Chromatogramme in Fig. 4 zeigen die auftretenden Peakvertauschungen bei den Cyclopentyl- und Cyclohexylestern beim Übergang von Squalan zu Polypropylensebazat.

Während in Squalan die Reihenfolge der Retentionsindices der C-Zahl entspricht (in Fig. 5 hat die obere Kurve kein Minimum bei C₉), haben die nicht alkylierten cyclischen Ester in stark polaren stationären Phasen wesentlich höhere Indices als die alkylsubstituierten. Das Minimum bei C₉ in Fig. 5 ist um so tiefer, je polarer die stationäre Phase ist, vgl. auch die Chromatogramme in Fig. 4. Bei dem Substanzpaar Bicyclohepten-(2,2,1)-carbonsäure und seinem *α*-Methylderivat kommt es nicht zur Peakvertauschung, wohl aber rückt die unmethylierte Verbindung in der polaren stationären Phase sehr nahe an die Methylverbindung heran. Es kommt hier keine Vertauschung der Reihenfolge zustande wegen der besonderen sterischen Verhältnisse bei diesem Ringsystem. Die Retentionsindices in apolaren stationären. Phasen werden ausschliesslich durch den Dispersionseffekt beeinflusst. Die Dispersionswechselwirkung wird aber besonders durch das tertiäre C-Atom und die sterischen Verhältnisse an diesem beeinträchtigt. Das sieht man an den beiden homologen Reihen der Cyclopentyl- und Cyclohexylcarbonsäureester. Die Indexdifferenzen zwischen zwei Homologen mit einer um eine Einheit verschiedenen C-Zahl nähert sich erst bei höheren C-Zahlen dem zu erwartenden Wert von 100 für gleiche Dipol-Dipol-Wechselwirkung bei gleicher Abschirmung (Tabelle XI).

Fig. 5. Relative Retentionsvolumina der Methylester der 1-Alkyl-cyclohexancarbonsäure-(1) in Abhängigkeit von der C-Zahl in vier verschiedenen Säulen.

In stark polaren stationären Phasen kommt es wegen der Dipol-Dipol-Wechselwirkung und deren Abhängigkeit von der Abschirmung durch die in α -Stellung stehenden Alkylgruppen zwar zu den erwähnten Peakvertauschungen, doch ist festzustellen, dass bei diesen stark verzweigten cyclischen Estern die sterischen Einflüsse auf den Dispersionseffekt ebenso wichtig sind wie die Abschirmung der funktionellen Gruppe bei der Dipolwechselwirkung. Ob es gelingt, den Einfluss der Stellung der funktionellen Gruppe in einer Kohlenstoffkette auf den Dispersions-

TABELLE XI

INDEXDIFFERENZ	ZWISCHEN	HOMOLOGEN	CYCLISCHEN	CARBONSÄL	JREESTERN
----------------	----------	-----------	------------	-----------	-----------

Methylester der	Squalan	Differenz
Cyclopentancarbonsäure	902	
1-Me-Cyclopentancarbonsäure-(1)	925	23
1-Et-Cyclopentancarbonsäure-(1)	1017	92
Cyclohexancarbonsäure	1011	
1-Me-Cyclohexancarbonsäure-(1)	1026	15
1-Et-Cyclohexancarbonsäure-(1)	1122	90
1-n-Pr-Cyclohexancarbonsäure-(1)	1200	7ð
1-Bu-Cyclohexancarbonsäure-(1)	1285	85

effekt durch Inkremente von Retentionsdaten zu erfassen, wie es DUNKEL²² analog für die Verdampfungswärmen bereits versucht hat, wird sich in einer späteren Arbeit zeigen.

DANK

Herrn Prof. Dr. KARL ZIEGLER, dem Direktor des Max-Planck-Instituts für Kohlenforschung, möchte ich für stets gewährte grosszügige Unterstützung und Förderung meiner Arbeit danken.

ZUSAMMENFASSUNG

Es werden die Retentionsdaten für die bei der Koch-schen Carbonsäuresynthese aus unverzweigten Olefinen entstehenden a-verzweigten cyclischen und acyclischen Carbonsäuremethylester angegeben und die Abhängigkeit dieser Daten-überwiegend in Form der Kovats-schen Retentionsindices-von der Struktur der zugehörigen Verbindungen diskutiert. Zu den Messungen werden stationäre Phasen verschiedener Polarität in Kapillarsäulen verwandt und der Einfluss der Polarität auf die Trennung der einzelnen Isomerentypen, besonders auch bei den cyclischen Carbonsäureestern, untersucht.

SUMMARY

A detailed investigation of aliphatic and cyclic α -branched carboxylic acids in the C_5-C_{12} range is undertaken by means of capillary column gas chromatography of their methyl esters. The relations between their retention data presented as retention indices (Kovars) and chemical structure are discussed. The influence of the polarity of the various liquid phases on the separation of isomeric esters is studied. The acids investigated are found in the reaction products of the KOCH synthesis. By the gas chromatographic methods described all components of often complex mixtures of isomeric acids from this process can easily be identified.

LITERATUR

- ¹ R. S. GOHLKE, Anal. Chem., 31 (1959) 535.
- ² D. HENNEBERG, Z. Anal. Chem., 183 (1961) 12.

- ³ L.P. LINDEMANN UND J. J. ANNIS, Anal. Chem., 32 (1960) 1742.
 ⁴ A. A. EBERT, Jr., Anal. Chem., 33 (1961) 1865.
 ⁵ D. HENNEBERG UND G. SCHOMBURG, in M. VAN SWAAY (Herausgeber), Gas Chromatography 1962, Butterworths, London, 1963, S. 191. ⁶ C. BRUNNÉ, L. JENKEL UND K. KRONENBERGER, Z. Anal. Chem., 189 (1962) 50. ⁷ J. A. DORSEY, P. H. HUNT UND M. J. O'NEAL, Anal. Chem., 35 (1963) 511.

- ⁹ I. BROWN, J. Chromatog., 10 (1953) 284.
 ¹⁰ A. WEHRLI UND E. KOVATS, Helv. Chim. Acta, 42 (1959) 2709.
- ¹¹ E. KOVATS, Helv. Chim. Acta, 41 (1958) 1915.
- ¹² R. KAISER, Z. Anal. Chem., 189 (1962) 1.
 ¹³ L. ROHRSCHNEIDER, Z. Anal. Chem., 170 (1959) 256.
- ¹⁴ H. KOCH, Brennstoff-Chem., 36 (1955) 321; Fette, Seifen, Anstrichmittel, 59 (1957) 493.
 ¹⁵ K. E. MÖLLER, Angew. Chem., 75 (1963) 1098 (Deutsch), Intern. Ed., 2 (1963) 719 (Englisch).
 ¹⁶ M. B. EVANS UND J. F. SMITH, J. Chromatog., 6 (1961) 293.
- ¹⁷ K. E. Möller, Privatmitteilung.
- ¹⁸ R. E. KIRK UND D. F. OTHMER (Editors), Encyclopedia of Chemical Technology, Vol. 5, The Interscience Encyclopedia Inc., New York, 1949, S. 827.
- ¹⁹ D. HENNEBERG, Privatmitteilung.
- ²⁰ B. EISTERT, Chemismus und Konstitution, F. Enke Verlag, Stuttgart, 1948, S. 219.
- ²¹ W. HÜCKEL, Theoretische Grundlagen der Organischen Chemie, 2. B., 5. Aufl., Akademische Verlagsgesellschaft, Leipzig, 1948, S. 181.
- ²² M. DUNKEL, Z. Phys Chent., 138 (1928) 42.